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CHAPTER 1. INTRODUCTION 

1.1 Introduction to Image Data Compression 

This is an era of information revolution. Information exchange through ser­

vices like telephone, television, facsimile transmission and computer networks heis 

multiplied enormously over the years. This may be attributed to a large extent to 

processing information using digital hardware. Digital hardware provides the dual 

advantages of high speed data processing coupled with extremely compact circuitry, 

which are primary requirements for most of the information services that have been 

visualized for the future. Digital representation of analog information has several 

other advantages as well. Digital signals are less sensitive to transmission noise than 

analog signals. As a result, they are able to make better use of interference-limited 

and noise-limited communication media [l]. Digital information can be acquired, ma­

nipulated, stored, transmitted and interpreted no different from a sequence of num­

bers. AU the concepts of controlling numerical operations from remote computers 

through networks can be easily applied to information processing. Digital processing 

of signals has facilitated implementation of many sophisticated algorithms thereby 

making them more tractable. 

Digital hardware technology has fueled an enormous growth in the information 

industry. It has resulted in an explosion in the rate of information exchange. The 
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stupendous rate of information exchange has resulted in generation and transporta­

tion of enormous amoimts of data. This has necessitated compression as a means 

to reduce the simount of data required to convey any given information. In fact, 

data compression has become one of the areas that has received a lot of attention 

in recent years. From information services point of view, two types of signals are 

of major concern viz., speech and image signals. Both these signals share common 

traits like high correlation within the signals, established methods for conversion from 

analog signals to digital data, tolerance to reasonable levels of subjective distortion 

in general, and existence of tractable measures for objective distortion. Hence, these 

signails are excellent subjects for data compression. Image signals are quite pervasive 

in the field of information processing. 

Digital images require enormous amount of data for their representation. For 

example, a still picture on a video monitor is typically represented by an array of 

512 X 512 samples. So, the number of samples representing the picture is 262,144 

and if each of these samples is represented by an 8-bit number in a computer (for 

gray scale images), the total number of bits required to represent the picture is more 

than 2 Megabits. As a second example, t3T3ical data rates for reasonable spatial and 

temporal quality of images in broadcast television is about 100 megabits per second 

(without compression) [2]. Thus, storage and/or transmission of image data, whether 

from still or motion pictures, require enormous channel and/or storage capacity. This 

aspect of image data makes its compression all the more desirable and imperative. 

Image data compression is primarily concerned with reducing the amoimt of data 

required to represent images. The major advantage of image compression is that the 

burden on the chsinnel, storage memory and the equipment that transmits/receives 
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the data is diminished due to reduced amounts of data. Thus, methods designed 

for image data compression can be viewed from either a transmission or a storage 

viewpoint. Transmission applications will generally be more sensitive to the process­

ing requirements of an algorithm because information transmission and reception, 

typically, are real time applications. Archival applications will be more sensitive to 

the achievable compression as they will, generally, have no time constraints. A block 

diagram of a typical image data compression operation is shown in Figure 1.1. 

Decoding 

Encoding 

Channel 
or 

Storage Medium 

Figure 1.1: A schematic of a typical data compression operation 

Image data compression also has disadvantages. Barring very few methods, im­

age compression results in a distorted reconstruction of em image. Image compression 

introduces additional cost in processing depending on the method used for compres­

sion. This cost increases proportionally to the amount of compression required and 

the effectiveness of a compression method. The thrust of research in the area of pho­

tographic image compression has been to generate reconstructions that have better 

subjective quality with simultaneous reduction in bit rates. This has given rise to 

several new methods of signal coding, e.g., subband coding, wavelet transforms, frac-

tjil signal compression, which are collectively known as the second generation coding 
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algorithms. All these methods are computationally intensive and require dedicated 

hairdware in order to provide good reconstructions at reasonable speeds. 

In the present discussion, it is assiimed that the original images are already 

in digitized form and any distortion the image has suffered due to the process of 

conversion digitization is considered negligible. Thus, all references to distortion 

measiires is with respect to this digitized image. Image data compression methods 

can be broadly classified into two classes, viz., reversible and irreversible (lossy) 

compression. In the former class are compression methods that do not result in any 

loss of information due to compression. The reconstructions that result from these 

methods are exact versions of the corresponding originail images. But the achievable 

compression in this class is generally low and critically dependent on the correlation 

properties of the images in question [2]. The latter class of compression methods 

aire characterized by higher and selectable compression factors irrespective of the 

correlation properties of the images. The reconstructions from these methods are 

distorted versions of the corresponding original images. Inherently, there is a trade­

off between the compression ratio and the loss of information. 

Recently, a significant amount of research effort has been directed towards us­

ing postprocessing techniques for restoring decoded images from lossy compression 

algorithms. Application of image restoration techniques is expected to result in sub­

jectively pleasing reconstructions with tolerable variations in objective distortions. 

However, the trend has been to consider image restoration as an independent aspect 

of the decoding process. The restoration technique is considered to have no direct 

bearing on either the bit rate or the compression algorithm. The effort of this re­

search is to incorporate a viable restoration technique as an integral component of a 
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compression algorithm. It is expected that such an effort would have a direct bearing 

on the rate-distortion trade off of the compression algorithm. 

1.2 A Brief Review of Related Work 

The theoretical idea of restoring a signal by imposing a number of constraints 

on its coded form has been researched by Youla, Stark and Stevenson[5, 6, 7] etc.. 

This technique is generally referred to as the theory of Convex Projections (CP), a 

concept derived from Linear Spaces. Application of the theory to practicsil situations 

has again been investigated by Katsaggelos et.al, Zakhor, Mersereau and others [8, 

9, 10, 11, 12]. Katsaggelos [8] applied the theory to deblur images using Weiner 

Filters. Zakhor and Yang et. al studied the application of the theory to block DCT 

compressed images to eliminate blocking artifacts at the block boundaries in DCT 

images while Su and Mersereau [12] tried to eliminate both blocking and ringing 

effects. Sezan and Stark [6] applied the theory to reconstruct tomographic images. 

However, there is very little published work on the application of the theory to 

VQ compressed images. Vector Quantization (VQ) is a very viable alternative to 

the DCT among block coders with a potential to provide better reconstructions at 

identiceil bit rates and execution costs. The main advantages of the VQ approach to 

compression are: 

1. Unlike block DCT, VQ does not suffer from problems of ringing due to trunca­

tion/ quantization of frequency components. 

2. VQ (with prediction) inherently exploits the interblock correlations. Thus the 

blocking artefacts that are very perceptible in low bit rate DCT compressed 
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images is not apparent in low bit rate VQ compressed images. 

However, vector quantization suffers firom one basic problem. At lower bit rates 

the edges in an image are badly degraded. The degradation of the edges is inversely 

proportional to the bit rate and hence to the size of the "codebook". This is because 

bulk of the representations in a codebook encode the edges and very few represen­

tations encode the shade regions. A decrease in the transmission bit rate implies a 

reduction in the number of representations in the codebook which implies a reduction 

in the edge representations. 

1.3 Objective and Scope of the Dissertation 

The objective and scope of the dissertation is to investigate the effects of incor­

porating an image restoration/recovery algorithm on the fidelity of low bit rate VQ 

compressed images. In particular, the objective is to study if the use of a recovery al­

gorithm in the reduction of bit rates and its effects on the decoded images. The recov­

ery technique is incorporated as an integral part of VQ compression/decompression 

algorithm. The scope of the study is twofold: 

1. To develop numerical implementations of the convex projection (CP) algorithm 

as applied to Vector Quantization. 

2. To study the effects of the approach on subjective fidelity of the decoded images 

and achievable compression ratios. 
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CHAPTER 2. INFORMATION THEORY AND THE RATE 

DISTORTION FUNCTION 

Information theory provides the mathematical basis for some of the fundamental 

problems in communication. A thorough imderstanding of this mathematical foun­

dation and its application to communication, is a prerequisite before any attempt is 

made to solve the problems themselves. Data compression is a particular problem 

in communication that deals with the reduction of data to be transmitted/stored in 

order to transfer some information. A brief discussion of the mathematical aspects 

that governs data compression, is therefore, called for. This chapter presents a brief 

overview of those aspects of information theory that are relevant to the problem of 

lossy and lossless compression of images. 

The object of siny data compression algorithm is to reduce the simount of data 

required to represent some given information. This representation may (or may not) 

result in a finite amoimt of information loss. Image compression is no exception to 

this nile. Since images are also a form of information, all the results in information 

theory are directly applicable to them. It is therefore logical to express and measure 

the information contained in an image quantitatively. The topic of information theory 

was first discussed by Hairtley in 1928 [14]. It was later formalized from an engineering 

perspective by Claude E. Shannon in his now famous papers [15, 16]. 
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2.1 Overview of Information Theory 

Historically, the basic concepts of information theory such as entropy, mutual 

information, and redundancy were first introduced by Shannon [16]. Shannon also 

stated the fundamental problem in communications as- the reproduction at one point, 

either exactly or approximately, a message that is selected at another point, from a 

set of possible messages. Each of these messages is characterized by its probability of 

occtirrence/selection. Shannon defined quantities to measure the information content 

in individual messages and the average information content of an exhaustive set of 

messages emanating firom any information source. 

2.1.1 Discrete Memoryless Information Source 

Any information source can be modelled in terms of a set of symbols, their prob­

abilities of occurrences and their interdependencies. A discrete memoryless source 

(DMS) is the simplest source model that can be constructed to describe any given 

set of messages. In practice, there are very few real information sources that can 

be characterized under DMS. However, this class of sources is a very convenient 

mathematical abstraction that acts as a standard for comparing the performances of 

different sources of practical interest. 

A source is considered to be a DMS when it emits a discrete set of sjonbols whose 

probabilities of occurrences are independent of symbols that were emitted previously 

by the same source. Mathematically, it is said that such sources emit s3Tnbols that 

are independent of each other and identically distributed (i.i.d). In this discussion, 

an information source is assumed to emit one symbol at every unit of time. A group 

of such symbols constitutes a message. 
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A DMS is mathematicsilly defined as follows. Consider a DMS with source s)Tn-

b o l s  { X I , X 2 , X 3 . . . X N }  w i t h  c o r r e s p o n d i n g  p r o b a b i l i t i e s  { P { X I ) , P { X 2 ) , P { X 3 ) . . .  P { X N ) } .  

Besides the symbols, this source is completely defined by the probabilities of all the 

symbols. In particular, the knowledge of only N — 1 independent probabilities is 

required since the sum of probabilities must equal 1. The complexity of such a DMS 

is said to be AT — 1. The probability of occurrence of a message can be computed 

as a product of the probabilities of occurrence of all the symbols that constitute the 

message. 

2.1.2 Information Content of a Message 

The information content or the self information of a single message (from a set 

of possible messages) emanating from a DMS is given by [17] 

(2-1) 

where x  = [ x i X 2 , . . . is the message in question and P { x )  is its probability 

of occurrence. The use of logarithmic function for information measurement was 

initiaDy suggested by Hartley. The logarithmic function satisfies all the intuitive 

properties that are required of a function that defines the information content of a 

message: 

1. The information content of a message is inversely proportional to the probability 

of its occurrence. 

2. The information content in a message with a unity probability of occurrence is 

zero. 
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3. The total information contained in two independent messages is the sum of the 

information content of the individual messages. 

The self information expressed by Equation (2.1) can be defined with respect 

to any logjirithmic base. The choice of base dictates the units in which the self 

information is expressed. The use of 2 as a base is common and the corresponding 

imits are bits. 

2.1.3 Entropy of cin Information Source 

Consider a discrete memoryless information source (DMS) S which can em­

anate a set of N possible symbols {xi,x2!—with corresponding probabilities 

{P{xi),P{x2)T--P{xff)}. The entropy or the average information content of the 

source is given by [17] 

H { S )  = — P j ^ n )  log2 P j ^ n )  bits/symbol (2.2) 
n=l 

where 0log20 = 0. 5 is the source in question, H{S) is the entropy or the average 

information content of the source, P{xn) is the probability of occurrence of the 

symbol of the N possible symbols. The entropy or the average information content 

of a source is measured in bits per symbol. 

The entropy as defined in Equation (2.2) depends only on the shape of the 

probability density function (pdf) of the source. It can only take on values ranging 

from 0 to logiN. The maximum value is achieved when all the symbols from the 

source aire equiprobable. The minimum value is achieved when one of the messages 

has a unity probability of occurrence while the rest have zero probabiUty. Thus, the 

flatter the pdf of the source, the larger its value of source entropy. 
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2.1.4 Noiseless Source Coding Theorem 

The object of noiseless source coding is to transform a given sequence of mes­

sages into another sequence called a code sequence such that it is shorter than the 

originail data sequence and it is possible to recover the original sequence without any 

distortion. 

Consider an information source S that emits N possible symbols {xi,a;2,-"a^Ar} 

with corresponding probabilities of occurrence {P(xi), P(x2)) Let these 

symbols be converted to some code sequences with respective lengths Li,L2,...and 

Lff. The average length L of this code is given by 

L = j 2 P M L n  ( 2 . 3 )  
n=l 

According to Shannon's theory, in order that the code sequences be imiquely 

decodable, (i.e., for the code to be noiseless), this average code length must be greater 

t h a n  o r  e q u a l  t o  t h e  e n t r o p y  o f  t h e  s o u r c e  i . e . ,  H { S )  

L  >  H { S )  (2.4) 

The equality in Equation (3.4) can be achieved if Ln is equal to —log2P{x) for all 

n. This important relation between entropy of a source and the average code length 

is referred to as the noiseless source coding theorem. 

Thus, from the noiseless source coding theorem, it can be seen that the smallest 

possible average code length is achieved when the length of the codeword for each of 

the possible message sequence equals the self-information content of that message. 

Based on this justification, the self-information of a message is also called the ideal 

code length of the message. 
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2.1.5 Overview of Rate Distortion Theory 

Rate distortion theory is one of the many astounding contributions of C.E. Shan­

non to information theory. In the noiseless source coding theorem, Shannon proved 

that the minimum rate at which a discrete memoryless source can be coded such that 

the information can accurately be reconstructed (at the destination), is the source 

entropy H{S). In rate-distortion theory, he considered the problem of source coding 

with a distortion. In this case, there is no longer a need for accurate reconstruction 

of source information. Rather, a finite amoimt of distortion between the reproduced 

and the original (source) information is expected and quantified [18]. This quantity 

is also known as the fidelity. The problem is then to minimize the level of distor­

tion for a given data rate, or, equivalently to reduce the data rate for a prespecified 

distortion level. Speech and images lend themselves very well to this type of source 

coding. This is because both speech and images are tolerant to reasonable levels of 

subjective distortion. 

It has been shown that, for a broad class of sources and distortion measures, 

a rate distortion function R{D) can be obtained. This fimction divides the rate-

distortion plane into a set of points for which good codes for compression exist and 

a set of points for which no code exists at the desired distortion level. The function 

has the following properties: 

(i) For any given level of distortion Do, it is possible to find a coding scheme 

with a rate arbitrarily close to R{DO) and an average distortion arbitrarily close to 

Do. 

(ii) It is impossible to find a code that achieves reproduction with fidelity DQ  (or 

bet ter)  a t  a  rate below R{DO).  
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In the following brief discussion of rate distortion theory, we confine our discus­

sion to discrete memoryless sources (DMS). The same ideas hold even for sources 

with memory, where conditional probabilities replace the independent probabilities 

in appropriate expressions. 

Consider a DMS with source symbols {ai,a2,... ,ajv} with a corresponding 

probability distribution {pi,p2, - • • ,'PN}- Sequences of length K of the above N 

symbols from this source will be encoded into sequences of length K from the re­

producing adphabet {6i,62)--• The single-symbol distortion measure is de­

fined as d(an,bm), which assigns a real non-negative value to every (on, bm)- Let 

Wi = aii, a2i,..., aKi be a source sequence whose reproduced version in a given en­

coding scheme is Vj = i>ij, b2j,., bKj- The average distortion per symbol of Wi is 

then given by 

= (2-5) 
k=l 

The average distortion of the source is then given by the statistical average of 

d{Wi, Vj) over all the source sequences. In general, if the information is composed of 

P messages {Vj, V2,..., Vp}, and a Wi is assigned to every message Vj such that 

the distortion d(Wi, Vj) is minimized, then the average distortion over all possible 

message sequences is ^ven by 

d= Yi Pmd{Wi,Vj) (2.6) 
all We 

where Vj is a function of Wi, P{Wi) is the probability of occurrence of the symbol 

sequence Wi and d(Wi, V^) is the distortion value between the source sequence and 

the corresponding reproduction sequence to which the source sequence is mapped on 
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to. The rate of the code is given in terms of bits/symbol by 

R  =  ̂ \ o g ^ P  (2.7) 

where R is the rate of the code in question, K is the number of sjonbols within a 

sequence and P is the number of reproduction sequences in the code. 

A code is said to be P-admissible if the average distortion associated with the 

code is less than or equal to D. The smallest value of R which has a distortion less 

than D is denoted by R{D) and is known as the rate-distortion function. 

The minimimi distortion is achieved if each source symbol Cn within the sequence 

Wi is assigned a reproduction symbol 6^0 such that d(a„, hmo) < d(an, bm) for all m. 

This minimum distortion, dmin, is then given by 

i.e., for D = dmin, each source sjmibol On is mapped on to a certain bmo- This is 

achievable when each of the symbols wthin the sequence is coded individually as in 

the case of scalar quantization. When the message sequence is quantized as a block, 

Equation 2,8 does not hold for every On- But the high rate of data compression that 

can be achieved using block quantization more than makes up for this trade-off. 

If the mapping between a„ and bm is one-to-one, the code will have a rate equal 

to the source entropy. But, in general this mapping is seldom one-to-one, and always 

some sort of many-to-one. Thus, more than one a„ is mapped onto every bm resulting 

in a data compression with certain non-zero distortion. The function R(D) is a 

nonincreasing function of D. As D increases, the function R(D) decreases until at 

some value D, say , it becomes zero and remains at that value for all higher values 

jv 
^min — y ] (2.8) 

n = all source symbols that are encoded 
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of D. To determine the value of , i.e., the point at which R = 0, or, from Equation 

2.7, P = 1. Thus, this expression tells us to find a single codeword that exhibits a 

miniTmim average distortion with respect to all the source symbols. 

From the above discussion it can be concluded that the rate-distortion function 

R{D) is a monotonically nonincreasing function of D and the range [dminjC^max is 

the range of interest. The typical behavior of the rate-distortion function is depicted 

in Figure 2.1. Further, = 0 can be achieved if for each source symbol On there 

exists a symbol 6^0 such that d{an, bmo) = 0- In case of discrete sources with a finite 

Figure 2.1: The rate-distortion function 

alphabet set, zero distortion can be achieved with a finite data rate. However, if the 

source is continuous, = 0 can only be achieved with an infinite data rate. 

From Equation 2.7 it cam be deduced that for a constant P, larger values of K 

results in smaller data rates. However, to construct a D-admissible code having a 

leirge value for N and a small value for M, the source that is being coded should 

have a highly localized probability distribution function (PDF). The probabilities of 

occurrence of a few symbols have to be extremely high (i.e., approaching 1) while the 

bulk of the symbols should have vanishingly small probabilities of occurrence. 
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The idea of Vector Quantization (VQ) is a direct consequence of this deduction 

from the rate-distortion theory. The rate-distortion theory suggests that a Discrete 

Memoryless Source (DMS) with a PDF localized over a small range of values, can be 

coded better using a vector coding approach rather than scalar coding approaches. 

Vector coding approach results in a bit rate that is very much closer to the rate 

distortion bound than a scalar coding approach can ever achieve. In vector quantiza­

tion of images, the image is first partitioned into blocks of dimensions P x P. Each 

block is then considered as a vector with dimensions P^. The entire block is then 

quantized as a single vinit rather than quantizing individual pixels. The assumption 

that is implicitly made here is that a very few rejilizations (of all the possible ones) 

have a very high probability of occurrence (approaching 1), while the bulk of the 

realizations have an extremely low probability of occurrence ( approaching 0). 

From the above discussion, it is obvious that a white noise with a uniform dis­

tribution is a very poor candidate for VQ. Application of VQ is not justifiable if it is 

previously known that the signal in question is indeed a uniformly distributed white 

noise. However, if the distribution of the noise is gaussian, laplacian or any other 

type of distribution that exhibits a high degree of localization in its PDF, significant 

gains in the bit rates can be achieved for a given SNR. 

Several studies have been performed on the statistical properties of both speech 

and images. It has been observed that the irmovations values, which result as the 

difference between the actual and predicted versions of the sample, predominantly 

exhibit either Gaussian or a Laplacian distribution. Thus, the use of vector quanti­

zation (with codebooks having similar statistical properties) to code the innovations 

values is justified. 
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CHAPTER 3. THEORY OF CONVEX PROJECTIONS 

This chapter presents the theory of convex projections (CP) as applied to the 

problem of signal recovery. It also presents an image recovery algorithm due to 

Gerchberg and Papoulis ([6]) based on CP known commonly as the GP algorithm. 

The algorithm itself is presented here because the method developed in this disser­

tation is an extension of the GP algorithm. This chapter is intended to highlight the 

differences between the two approaches. 

3.1 Definitions and the Mathematical Theory 

The mathematical theory of convex projections (CP) is developed in the context 

of a Hilbert space. Hence, a brief introduction to Hilbert spaces and convex sets is 

presented before discussing CP. The definitions have been extracted primarily from 

two sources [3, 4]: 

Definition 1 A vector space W is a set of objects x,y,z, - • • called vectors together 

with two binary operations +, * (denoting summation and product operations respec-
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lively) and scalars A,/i, • • •, which satisfy the following properties: 

x + y = y -\-x Commutative law 

x  + { y  +  z )  =  { x +  y )  +  z  A s s o c i a t i v e  l a w  

a: + 0 = X Existence of an additive identity 

X  +  ( — x )  = 0 Existence of an additive inverse 
(3.1) 

A(a; + y) = A(x -f y) Distributive law 

(A + /JL)X = XX + FJUC Distributive law 

{ X f j . ) x  =  X { f j i x )  =  f j i { X x )  M u U i p i c a t i v e  a s s o c i a t i v e  l a w  

Ix = X Existence of a multiplicative identity 

Definition 2 A pre Hilbert space is a real or complex vector space ^ with an inner 

product {x,y) satisfying the following properties: 

{ X , Y )  = 

{ { x  +  y ) , z )  =  { x , z )  +  { y , z )  
[6 .2)  

{ X x , y )  = A(x,y) 

(x, x) > 0 when x ^ 0 

An example of such a space in the complex domain cam be defined as follows: 

Let be a space defined in (i.e, the individual vectors in the space have the form 

X = (^1,^2) where and ^2 are complex numbers). The inner product of any two 

vectors x = in this space is defined as shown below: 

(a:,y) = (6^1+^2%) (3.3) 

An inner product space so defined satisfies all conditions of a pre Hilbert space. 

Definition 3 A sequence x^ is said to be convergent if there exists a vector x such 

that x„ —»• X as n —> 00. 
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Definition 4 A sequence x„ is said to be Cauchy in case d {xm,xn) —»• 0 as m,n —>• 

oo, where d is the distance operator. 

Definition 5 A metric space is said to be complete if every Cauchy sequence in the 

space is convergent. A pre Hilbert space that is complete is called a Hilbert space. 

Definition 6 A subset C of a Hilbert space H is said to be convex if for every pair 

of elements fi,f2 in C, the element ^/i + (1 — /i)/2 is also in C, for all fj,, 0 < fi, < 1. 

Definition 7 Let W be a vector space over real numbers. A non empty subset W of 

93 is said to be a linear manifold in 23 if: 

1. For any two vectors u and v in W the vector u + v is also in W; 

2. For any vector winW and any scalar a, the vector oew is also in W. 

Definition 8 Let be a vector space over real numbers. A non empty subset W of 

9 3  i s  s a i d  t o  b e  a  c l o s e d  s u b s e t  i f :  

^Sn lsn^2 OS n ̂  oo xE W  (3.4) 

where Sn denotes a sequence in the subset W 

The idea of using CP to solve problems in signal recovery stems from a view 

that considers such problems to be purely geometric in character. In order to apply 

CP the following initial formulation must be admitted [5]: 

• The original / is a vector known apriori to belong to a linear subspace Cb of 

a parent Hilbert space H. The available data to the observer is its projection 
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in another known linear subspace Co 6 H. The problem statement is then 

as follows: Find necessary and sufficient conditions under which / is uniquely 

determined by Paf  ( i ts  project ion in Co)-

Further, the conditions for the solution of the aforementioned problem are as 

follows: 

1. / is uniquely determined by Paf iff Cb and the orthogonal complement of Ca 

(Co )have only the zero vector in common. 

2. The restoration problem is said to be well posed iff the angle between Cb and 

Ca is greater than zero. If not, the problem is said to be ill posed. 

In general, signal restoration problems, particularly in the discrete domain are 

always ill posed due to sampling and quantization. Hence, it is impossible to achieve 

perfect recovery in real world situations but the attempt is to recover as much infor­

mation as is practical by using better approximations to the convex sets. 

Theorem 9 Let f,g,h be elements of a Hilbert space H, with a zero vector and an 

inner product. Let C he any linear manifold in H and C~, its orthogonal comple­

ment. Then, according to the projection theorem, every f E H, possesses a unique 

decomposition 

f = g + h where g EC and h E C-^ 
(3.5) 

i f f  H  =  C e C ^  

The vectors g and h are mutually orthogonal i.e., {g,h) = 0. Two linear operators 

P and Q defined by the rules g = Pf and h = Qf are the associated orthogonal 

projection operators projecting onto C and C-^. The projection operators P and Q 

also satisfy the following conditions P^ = P = {1 — Q) and = Q = {1 — P) [5]. 



www.manaraa.com

21 

The problem of reconstruction can then be stated as follows: If am element / 

(in the Hilbert  space)  belongs to a  known subset  Cb,  but only i ts  project ion g =  Paf  

where g E Ca is available, can / be reconstructed from the available data i.e., p? This 

question was addressed by D.C. Youla in his paper on generalized image restoration in 

1978. In the remainder of this subsection we provide a brief view into his formulation 

of the problem. 

Let Pa, Qa, -Pftjand Qi, denote the projection operators projecting onto the subsets 

Ca,Ca,Cb and Cfc- respectively. Then f E Cb implies / = Pbf and so 

If further A = {1 — QAPB)I then the vector / can uniquely be determined by ^ iff a 

boimded inverse for the transformation T = A~^ exists. The problem of reconstruct­

ing / from g (i.e., Paf ) given that f E Pb is said to be 'completely posed' iff the 

operator A = (l — QaPb) has a bounded inverse T, and incompletely posed otherwise. 

Generally, all practical image recovery problems are incompletely posed. In the case 

of an incompletely posed image recovery an iterative reconstruction equation exists 

and is given by 

Figure 3.1 shows the geometrical significance of the iterations depicted in the 

above expression 

The three subsets Ca, and Cb are indicated as three straight lines of infinite 

extent passing through the origin. It is required to restore the vector / = OA from 

its projection in the CLM Ca- Although it is impossible to synthesize / directly from 

Paf = OB = ghy direct movement back along BA to Cb it is nevertheless possible 

g= Paf  =  PaiPbf)  =  { l -Qa)Pbf  

=  iPbf-QaPbf)  =  { l -QaPb)f  
(3.6) 

fk+1 — g  + QaPbfk  Ar = 1 —> OO, f i  — g  (3.7) 
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Figure 3.1: Geometrical interpretation of the signal recovery operation in a Hilbert 
space 

to reach intermediate points D, F, H etc., which tend to the limit at A. Projecting 

OB on to CF, results in OC. The restoration is accomplished by projecting OC on to 

Cq and adding the result OC to OB resulting in the second approximation OD. The 

process is repeated with successive approximations resulting in vectors OF, OH etc. 

limiting to the vector OA. 

3.2 Application of Convex Projection Theory to Signal Recovery 

3.2.1 The Gerchberg-Papoulis Algorithm 

The general idea of signal restoration using convex projections has been applied 

in several signal recovery problems. Spectral extrapolation and tomographic imaging 

are two oft encountered applications that use convex projections for signal restora­

tion. The restoration techniques and algorithms employed are highly dependent on 
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individual applications. In this section, we describe a 1-D restoration technique 

known as the G-P algorithm. This dissertation deals specifically with variations of 

this algorithm applied to 2-D signals. 

The algorithm is defined for time limited functions f ( t )  over a region which 

are assimied to be members of an associated Hilbert space H. These functions can 

potentially be projected on to several convex sets. However, it is not necessary to 

use all the defined sets during restoration. Some of the convex sets defined are: 

1. Ci: The set of all f ' s  that vanish outside a prescribed region <5 C Ci is a 

closed linear manifold of H. Given any arbitrary function f E H, its projection 

onto Ci is realized by 

^  f { t )  t  € <5 
(3.8) 

0  t i 6  

2. Ci\ The set of all /'s in H whose Fourier transforms assimie a prescribed value 

G over a closed region S, in the Fourier plane. 

G(f2) € £ 

F(n) 

where F is the Fourier transform of / (i.e., / *—> F). 

Pif  =  

P2F = (3.9) 

3. C3: The set of all non negative functions in H that satisfy the energy constraint 

l\ f { t ) f d t < E  (3.10) 

4. C4: The subset of all functions in H that are non negative. This set is a closed 

convex set with '0' vector as the vertex. The projection onto this set is 

f i  / i  >  0  

0 otherwise 
A/ = (3.11) 
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•P5/ = 

5. C5: The set of all /'s in H whose amplitudes must lie in a prescribed closed 

interval [a, 6]. The projection onto is realized by the following rule: 

a  f { t )  <  a  

f i t )  a  <  f i t )  <  b  (3.12) 

b  f i t )  >  b  

Any 1-D signal source is described in the time domain as a function /(f),0 < 

t < 00 which represents the amplitude of the signal over all time. Two masks are 

defined in the algorithm, one in the time domain and one in the Fourier domain. 

Both masks work to restrict the areas of consideration in their respective domains. 

The mask in the time domain is equivalent to Pi defined above. This mask limits 

the source image to certain dimensions and is defined as 

1 t e 6  
(3.13) 

0  t ^ 6  

where <5 is a finite slice of the time axis within which the signal /(t) is of interest. 

A mask defined over the Fourier domain is equivalent to P2 defined above. It 

results in the elimination of certain Fourier components on the f2 axis. The function 

of the frequency mask is defined by: 

1 6 £ 
(3.14) 

0 

where £ is defined as a low pass region seeking to limit the frequency band of the 

signal imder consideration. 

The one-dimensional discrete Fourier transform (1-D DFT) of the sequence is 

given by: 

Fin)= Jjit)e-'^dt (3.15) 

X S I T )  =  

Xc(fi) = 
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For an arbitrary function <f){ t )  in H, the G-P algorithm is compactly represented as 

4>K+L = PLPZPIPB^PK (3.16) 

The transformations P4 and P5 are trivial while Pi and P2 are defined as follows: 

Pi^ =  Xs{ t )  4>{ t )  =  
T E 6  

0 

P2(F> = RHG + {I-XCM 

and 

G { N )  = « 

$(n) N E £ ,  

0 

Thus the G-P algorithm can be completely described as: 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
= r '  {G + (1 - Xc) d{Xs0fc)} 

4>Q = {G} 

In this method an attempt is made to iteratively restore a signal from its lowpass 

projection subject to certain predefined constraints. 
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CHAPTER 4. INTRODUCTION TO VECTOR QUANTIZATION 

Consider a 1-dimensional discrete time sequence which may have been obtained 

by sampling a continuous time waveform. From these individual time samples, we 

can form K"-dimensional vectors by grouping K contiguous samples at a time. The 

amplitudes of the individual samples of a group form the K elements of a vector. In 

Vector Quantization (VQ), we quantize the entire vector as a single unit instead of 

quaaitizing the individual discrete time samples [19]. This is simply a K-dimensional 

extrapolation of the well known scailar quantization technique. 

Consider an digitized image that consists of a grid of 512 x 512 pixels. Each 

pixel is a single digital sample with a definite intensity vailue (magnitude). The 

entire image (grid) is partitioned into blocks of 4 x 4. Each block then represents a 

member of a 16 — D vector space. Quantization of vectors in such a space is then 

defined analogous to quantization of samples in a 1-D space. 

In order to explain VQ, we will start with scalar quantization (or 1-dimensional 

VQ). The 1-dimensional space is represented by the real line from -oo to oo. 

This entire line will be mapped on to a finite subset of itself consisting of points 

ri,r2,... r^-i- Figure 4.1 is a uniform quantizer where represent the 

transition levels and ri,r2,... rn_i the reconstruction levels. Any input value that 

has an amplitude between U and U+i will be mapped to r^. This means that for 



www.manaraa.com

27 

all subsequent operations effectively substitutes for any value between ti and tj+i-

Obviously, such an operation introduces a certain non zero distortion which is referred 

to as the quantization noise. This quaintizer is termed as a scalar quantizer since it 

quantizes one discrete value at a given instant. 

Figure 4.2 is a vector extrapolation of the scalar quantizer discussed above. 

It depicts a /^-dimensional vector space which is partitioned into n subsets. The 

boundaries of these subsets axe represented by Ti, 72,... Tn called the transition hy-

perplanes. Each of these subsets is represented by a single vector known as the 

representative vector. In Figure 3.2, Ri, i?2, • • • RN denote the representative vectors. 

Thus, the entire vector space is represented by n representative vectors. 

A collection of these representative vectors, and so, implicitly, the transition hy-

perplanes is referred to as the 'Codebook' [19]. The idea of the codebook is discussed 

in detail in the next section. Any vector in the vector space fsdls within the bound­

aries of one of these subsets and so is replaced by the representative vector of that 

subset in any further operations involving the input vector in question. Here too, 

there is certain non zero distortion introduced due to the quantization operation. A 

good VQ design tries to minimize this error in some sense. 

VQ will yield good results only when a small number of vectors (among all the 

possible ones) have high probabilities of occurrence, while the majority of the vectors 

have extremely low probabilities (<< 1) of occurrence. Thus, it is necessary to 

determine the distribution of the pairameters being (vector) quantized before applying 

the procedure itself. The most important advantage of vector quantization is that it 

provides a framework for realizing bit rates less than 1 bit/pixel. This is impossible 

to achieve in a scalar quantization technique. 
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Figure 4.1: A diagrammatic representation of a scalar quantizer 

Figure 4.2: A diagraamnatic representation of a vector quantizer 
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4.1 Theoretical Definition of Vector Quantization (VQ) 

Vector Quantization is formally defined ais the mapping of a K-dimensional real 

vector space into a finite subset of itself [21], i.e., 

Q: (4.1) 

where Q is the defining function of the vector quantizer, R*' is the /(T-dimensional 

subspace and y is a finite subset of !&. 

Mathematically, the operation of VQ is defined by the following expressions 

UV. = 7(^n) (^^-2) 

5„ = r„ = ^{Ur,) 

where Q is the quantizer function 

Xn is the input vector 

r„ is the codevector to which the input vector is mapped to 

7 is the coding function 

Un is the 'index' or the code symbol for the codevector 

/3 is the decoding function and the inverse operation of 7 
A good VQ has to contend with two problems, 

1) To obtain a set of representative vectors that are evenly distributed in the 

vector space (or a part of it) such that any possible input vector can find a repre­

sentative vector close enough to keep the resulting distortion to a minimum in some 

sense. 

2) To keep the number of representative vectors as small as possible for a given 

measure of distortion. 
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4.2 Codebook of a Vector Quantizer 

A codebook is the heart of a vector quantizer. In fact, codebook and VQ are 

synonymously used in the literature. Codebook is a collection of all the representative 

vectors and, implicitly, the transition hyperplanes in a single file. In the 1-dimensional 

quantizers, the transition and reconstruction levels form the analog of a codebook. 

These transition and reconstruction levels are explicitly used in quantizing input val­

ues. In VQ, the transition hyperplanes can not explicitly be defined in the codebook, 

and also do not come into picture during quantization. However, in the operation of 

determining the nearest representative vector (in some sense), the implicit existence 

of the transition hjrperplanes is acknowledged. This determination of the right rep­

resentative vector from the entire collection of vectors in the codebook is termed as 

a "codebook search" and the time expended in doing this is called 'search time'. 

The inherent inability to explicitly locate the transition hyperplanes in higher 

dimensionad quantizers results in a large search time to determine the right repre­

sentative vectors. In 1-dimensional quantization the input value has to be grouped 

between any two transition levels, and the corresponding reconstruction level is bound 

to be the best choice. However, in multidimensional cases, the input vector has to be 

compared with all the representative vectors in the codebook. A measure of distance 

has to be defined to find a representative vector that is nearest in some sense, and 

use that vector as the true representation for the originail input vector. This measure 

of distance is generally referred to as a 'distortion measure' in data compression liter­

ature. There are a few different expressions for determining the distortion measure. 

Some of the more widely used ones are; 

(1) The absolute error distortion: In this distortion measure, the absolute value 
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of the difference between the two vectors in question serves as a measure of distortion. 

The expression for this measure is given by 

d { x ,  x )  =  \ \ x  - 211 = ^ Ixi - Xi\ (4.3) 
t 

where d ( x , x )  is the distortion measure and ||x — Sl| is the norm of the difference 

between the two vectors x and x. 

(2) The squared error distortion: This distortion measure also goes by the nsime 

MSE distortion. This distortion measure is proportional to the square of the norm 

of the difference between two vectors 

d ( x ,  x )  =  \ \ x  - xf = ^ (Xi - X i f  (4.4) 
i 

where the operators are defined and symbols are as defined in (4.3). 

The definitions for the different types of distortion measures between two vectors 

calculated instsintaneously leads to another distortion parameter called the average 

distortion measure. Average distortion measure can be defined as the sum of all the 

individual distortions divided by the total number of individual distortions under 

consideration, ff an image has N individual block distortions defined during an 

operation then the average distortion is given by the expression 

1 ^ 
D { x ,  x) = — Yl d { x n ,  2„) (4.5) 

n=l 

4.3 Implementational Trade-ofFs in a Vector Qucintizer 

The three major aspects to be considered with any data compression technique 

are 1) Bit rate 2) Execution complexity and 3) Subjective/Objective fidelity. Imple­

mentation of VQ, like any other technique, involves trade-offs between these three 
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aspects. Larger compression ratios imply lesser subjective/objective fidelity and vice 

versa assuming a constant execution complexity. The ongoing research in any com­

pression method is to find wa3:s to provide better fidelity at lower bit rates and a 

reasonable complexity. 

Bit Rate: In case of VQ, the bit rate is dependent upon the size of the codebook 

(dictionary of representative vectors). For a 16 — Z) vector space, the nominal size 

of the codebook to obtain visually tolerable reconstructions has experimentally been 

determined to be about 256 vectors. But, any further reduction in the codebook size 

results in annojang subjective distortions [7]. 

Execution complexity: The standard implementation of VQ is very fast, partic­

ularly at the decoder but suffers from severe edge degradation. Several improvements 

over the standard VQ have been suggested in literature to overcome the problems. 

All these suggestions add significant amounts of complexity to the standard approach 

and increase the execution time. 

Subjective/Objective fidelity: Fidelity of a reconstruction can be viewed from 

two different perspectives. Objective fidelity is a measure of accuracy between the 

original and coded waveforms. In case of an image, it is the pixel-by-pixel match 

between the two. Subjective fidelity is a practical measure of how good the differences 

between the two waveforms are 'masked'. This is actually a function of discemability 

of the human eye. A reconstruction with very good subjective fidelity may not have 

good objective fidelity. Current thrust in compression of real images is to obtain 

reconstructions that have good subjective fidelity even at the expense of objective 

fidelity. 
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4.4 Classified Vector Quantization (CVQ) 

As mentioned in the previous section reduction in the codebook size results in 

severe subjective and objective distortions of the overall reconstructed image. An 

obvious way to counter this problem is to localize the distortions to certain areas in 

the image. Classified Vector Quantization (CVQ) is a direct result of this argument. 

The CVQ approach essentially splits the image into areas of different levels of activity 

ex., shade regions and edge regions. Thus, distortions can be localized by reducing 

the number of representations for one region (edge re^on) with respect to the other. 

Resorting to this approach, however, several key problems are encountered. The two 

most serious problems are: (1) Edge degradation and (2) High complexity. 

Edge degradation: Image vectors can be classified based on their perceptual ef­

fect on the observer. A very broad classification can be shade and edge vectors. Edge 

and shade vectors do not affect himian perception in the same way. Separate distor­

tion measures are required to evaluate shade and edge regions [25]. Edge degradation 

occurs both in the classical VQ and CVQ approaches. In the classical VQ approach, 

a codebook constructed using the MSE distortion as a measure, processes all vec­

tors in a space identically, without regard to their perceptual effects. In the case of 

CVQ, distortions in one region is exacerbated due to the localization property of the 

approach. Edges constitute a very significant portion of subjective information even 

though the number of edge vectors are very few in any given image. 

High complexity: The complexity of VQ grows exponentially with block size aind 

compression ratio. At high compression ratios (< 0.5 bpp), a simple VQ is no longer 

sufficient to obtain visually good reconstructions. Improved versions of VQ based on 

psychophysics of the human vision are to be used. Any such refinements result in 
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higher complexity and longer execution time for the VQ. 

This section deals with one of the more successful approaches to reduce the afore­

mentioned problems. The method was reported by Ramamurti and Gersho in 1986 

[?]. The method is known as 'Classified Vector Quantization (CVQ)'. The crucial fea­

ture of edge perception is that an edge must appear essentially as sharp, continuous 

and well defined in the coded image as in the original. One of the important advan­

tages of preserving an edge is that the intensity levels on either side of it need not 

be reproduced precisely. This is what is known as the masking effect. The masking 

effect permits a very coarse coding of pixels near edges only if the integrity of the edge 

itself is preserved. The CVQ is proposed as a technique for preserving perceptual 

features while retaining simple distortion measures like MSE. It is best imderstood 

in terms of a composite source model for images where the image source is viewed as 

a bank of vector subsources. Each subsource generates blocks of a single perceptual 

class. 

4.4.1 The CVQ Classifier 

The CVQ is best modelled in terms of a composite source model for images, 

where the source is viewed as a bank of vector subsources, as shown in Figure 3.3. 

Each subsource generates blocks of a single perceptual class, e.g., blocks with am edge 

at a particular orientation suid location. At each instance, a switch selects on one 

of the subsources whose output then becomes the output of the composite source. 

Each subsource is characterized by its own codebook, called a svbcodebook, which is 

very small compared to the codebook of the composite source. At each instance, a 

full search is performed only within the subcodebook hence reducing the search time 
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dramatically. 

The classification algorithm is implemented in two steps, an edge enhancement 

step followed by a decision tree which extracts edge information from the enhanced 

version. The enhancement process is described below: 

Subsource I 

Subsource n 

Subsource in 

Subsource IV 

Subsource V 
Input 

Vector/Block 

Subsource VI 

Subsource VH 

Figure 4.3: A diagraunmatic representation of a composite source 

The gradients in the horizontal and vertical directions normalized by the average 

intensity {dh & dv) are first calculated. This is because the sensitivity of the human 

eye is proportional to the normalized gradient and not to the absolute gradient (i.e., 

the perception of the gradient by the human eye is dependent on the intensity values 
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of the pixek in question). The expressions for the two gradients are given by 

2 (^«.i 

D Y J  

I X I J  +  Xij+l) 

2 {pi,j ) 

(4.6) 

(4.7) 
( X i j + X i + i j )  

The thresholds Te and T® are functions of the average intensity, denoted by dav, 

of the two pixels under consideration when a normal gradient is being compared, and 

are defined by 

r.= 
fa if dav < 30.0 ®CIV 

0.2 otherwise 

7; = 
0.1 if dav < 30.0 or dav > 225 

0.2 otherwise 

The entries of the tables Gh and Gv are calculated as follows: 

1 if dft > Te; i = 1, 2 . . .  ,p 

- 1  i f  d / i  < - T e ;  J  =  1 , 2 , . . .  , p - 1  

0 otherwise 

(4.8) 

(4.9) 

(4.10) 

1 if dv > Te; f = l,2...,p—1 

Gv{i,3) = ' -1 if <-Te; J = 1,2,... ,p 

0 otherwise 

The coxmters Sh and Sv are incremented according to the following rule: 

(4.11) 

Sh = Sh + l if \dh\>Ts, i = 1, 2 , . . . , p 

j  =  l , 2 , . . . , p - l  
(4.12) 
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S„ = St, + 1 if |d„| > Ts, i = 1,2,... ,p—1 
(4.13) 

The Decision Tree: 

The decision algorithm works with all the computed tables and counters. Hp is 

the sum of +l's in Gh. and is the sum of — I's. Vp is the sum of +l's in Gv and 

Vn is the sum of —I's. 

A block X is considered to be a shade block if the coimters Sh and Sv satisfy 

the following conditions: 

It is an edge block with horizontal component of positive polarity and negative 

polarity if: 

respectively. 

It is an edge block with vertical component of positive polarity and negative 

polarity if: 

respectively. 

In the case when both the above conditions hold the block X is considered to 

be of a mixed class. The choice of the thresholds Jj and Jg determine what can be 

considered as reindom intensity change and what is not. This paper suggests a com­

posite source modeling approach to VQ encoding. The fidelity of the reconstructions 

depend on the accuracy of 1) the source model and 2) the representative vectors 

within a modeled subsource. 

S H  <  J S  and 5v < J S  (4.14) 

V p >  J e  and S v  > Je (4.15) 

Hp > Je and > Je 
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Two approximations are inherent in the CVQ approach. They are: 1) For small 

block sizes, a satisfactory description of edge with any orientation is approximated 

by a closest straight line across which the intensity changes abruptly. 2) The number 

of admissible edge orientations are restricted to four: horizontal, vertical and two 

diagonals. Even with such a minimal number of orientations there are several edge 

vectors which are distinctly different and need to be represented in the codebook. 

Even with these restrictions the size of the codebook does not reduce drastically. 

In fact, the authors of the method themselves suggest a codebook of size 256 with 

about 217 codevectors catering to the edges. This is because the VQ has to cater 

to edges that have different variations in the intensity vaJues across the edges. Also, 

edge transitions in real images are seldom abrupt at the pixel level, but occur over 

several pixels. Hence it is the opinion of this study that edges of real images cannot 

be modelled to any reasonable accuracy without exhaustively catering to all t3rpes. 

This, of course, increases the bit rate. 
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CHAPTER 5. IMAGE RESTORATION 

The proposed dissertation work is to study the applicability of the theory of 

convex projections (CP) for data compression of real images. The motivation for 

this research is that if image restoration can be used as a part of the decoding pro­

cess, the result may be a reduction in the amount of information to be transmitted. 

This is because the decoder will then try to generate the necessary information by 

extra(inter)polating from the available data. The technique is proposed to be imple­

mented in the spatial domain using the Vector Quantization approach. 

5.1 Motivation for Image Restoration 

Every image coding method that uses a block coding approach makes a trade-off 

between two key factors; (1) edge degradation and (2) higher complexity. 

Image blocks can be classified based on their perceptual effect on the observer. A 

very broad classification can be shade and edge blocks. The statistical properties of 

the two types of blocks are different. The infonnation content of an average edge block 

is much larger when compared to a shade block. Larger compression ratios (lower bit 

rates) result in larger distortion of the edges both perceptually sind objectively. Thus 

image restoration can be a viable tool to restore edges based on infonnation provided 

by the (much less distorted) shade regions, if there is enough mutual information 
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between them. 

Since the statistical properties of shade and edge regions are vastly different, it 

is necessary that the two regions be coded differently. The classification of regions 

into different types depends on the effect they have on human vision. In order to 

achieve good perceptual quality in the decoded images, improved versions of image 

coding techniques based on psychophysics of the human vision are to be lised. Any 

such refinements in standard coding techniques result in higher complexity and longer 

execution time. Current thnist in image compression is to obtain reconstructions that 

have good subjective fidelity even at the expense of objective fidelity. The primary 

objective is limited to obtaining reconstructions with good subjective fidelity, rather 

than obtaining a pixel-to-pixel match between the original and the reconstructed 

images. This dissertation study investigates the convex projection theory as a means 

to achieve that objective with high compression capability. 

The concept of convex projections (CP) does not lend itself to a straightforward 

implementation in the context of VQ. Even though the codebook of a VQer is indeed 

a subset of a suitably defined vector/Hilbert space, it is seldom convex and the 

operation of VQ itself is nonlinear. This is because larger compression ratios dictate 

smaller codebook sizes resulting in smaller subsets that are highly non-convex. As a 

matter of fact, a codebook of any size is strictly non convex. But, with increasing 

size, it approaches the space it actually represents. In the limiting case of infinite 

size the codebook becomes indistinguishable from the space it represents. 

Also, VQ is a highly non linear operation. Encoding of a large image is achieved 

by partitioning it into constituent smaller image blocks and encoding each of them 

independently. Such an operation results in distinct blocking effects at the edges of 
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the partitions. Image restoration in such a case, translates to eliminating the blocking 

effect with as small a size of the codebook as is practical. The "blocking effect" is a 

common observation in every known automatic image compression algorithm. In the 

case of VQ, the effect is very pronounced at the edges than in shade regions. Several 

approaches have been suggested in the literature to alleviate this problem. One of 

the more successful attempts in this regard was the Classified Vector Qujintization 

(CVQ) described in the previous chapter. 

This dissertation study is an attempt at restoring the edges of an image algo-

rithmicaUy with the help of image recovery techniques, specifically, the theory CP. 

The approach is to allow an iterative algorithm to progressively reconstruct the edges 

based on the shade pixels in the 'immediate neighborhood'. The method assumes 

that there is sufficient mutual information to be exploited between any edge and its 

surroimding shade regions. Thus, the contour of an edge is dependent on the ori­

entation of the shade pixels on either side of it. The edge reconstruction is left as 

a problem to be addressed by the theory of CP. The ultimate goal is to avoid an 

extensive coding of the edges. The technique used in this study is similar to that 

reported by Sezan and Stark in their paper on image recovery and convex projections 

[6] and was foimd effective. 

The goal is to have a bit rate lower than 0.35 bpp reported by Ramamxirti and 

Gersho [20]. This is possible because the decoder has a restoration algorithm which 

interpolates non existent information using some constraints. The recovery algorithm 

presented in this study is an extension of the idea developed Gerchberg and Papoulis 

(G-P) for 2-D images. We propose to test the approach primarily on real photographic 

grayscale images and evaluate the reconstructions for subjective fidelity. In the next 
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section, we develop 2-D mathematical constructs necessary for the application of the 

CP theory in the context of a vector quantizer. 

5.2 Convex Projections as Applied to Image Recovery 

The lossy nature of the encoder assures that encoding is not perfectly invertible 

at the decoder. This simply means that the decoder can never reconstruct the actual 

encoded image. It is obvious that more than one image realization satisfies the 

encoded bit stream. For instance, both the input image (at the encoder) and its 

lossy reconstruction (at the decoder) are represented by an identical bit stream in 

the channel. Specifically, there exist a set of "images", including the ori^nal, that 

will all yield the same data as the received image when compressed by the same 

encoding algorithm. In a conventional encoder/decoder tandem the image is decoded 

as a simple inverse operation with respect to the encoder. However, the judge of 

the compressed image quality is a human observer. Thus, selecting a particular 

realization based on constraints posed by human perception without violating the 

bit stream integrity will yield images with better subjective fidelity. 

Conceptually, convex projections (CP) is a method for selecting particular re­

alizations from a larger set that match any given set of constraints. The more the 

constraints match the original image, the better the decoded image. In Figure 5.1, 

set A denotes all images that have an identical bit stream when encoded with a 

particular VQ. Of course, the original image is one of them. Set B denotes a set of 

all images that have an upper bound on the slope at the interblock botmdaries. Set 

C denotes a set of all images that have identical shade representations but differing 

edge representations. 
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A - Images with identical encoding bit stream 
B - Images that satisfy a 'constraint' 
C - Images that satisfy a second 'constraint' 

Figure 5.1: Conceptual illustration of the projection approach 

The intersection set of these three constraint set will definitely contain realiza­

tions that have better subjective fidelity than those that belong to set A Jilone. 

5.3 Review of Related Work 

The practical application of Convex Projections (CP) to image restoration is a 

relatively new area of research. The very first paper that deals exhaustively with 

a specific compression method (Block Discrete Cosine Tremsform, BDCT) was pub­

lished by Yang and Galatsanos in International Conference on Image Processing 

(ICIP, Nov. 1994) [10]. This section briefly describes the work reported in that paper. 

A second paper on the same topic was published by Su and Mersereau in ICASSP, 

May 1995 [12]. 
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The BDCT compression method partitions an entire image into blocks of 8 x 8 

pixels and transforms each block independently. The transformed coefficients are 

quantized before transmission. Data compression is achieved by varying the number 

of quantizer levels (i.e, bits) allocated to each of the coefficients. At low bit rates, 

the reconstructed image suffers from perceptible blocking effects in the shade regions 

and ringing effects at edges. The authors in both publications use approaches based 

on the CP theory in order to eliminate the blocking and ringing effects. 

However, there has been no reports or publications on application of the CP 

theory to compression approaches based on Vector Quaintization. 

5.4 Vector Quantization and Convex Projections 

5.4.1 Multiple Codebooks (General Case) 

Since, the theory of CP is developed for Hilbert spaces, images have to be rep­

resented as elements from a Hilbert space. An image of dimensions NxN pixels 

can be considered to be a member of a A^'^-D integer vector space. In the case of 8 

bit grayscale images, all vectors are composed of mod 255 scalaxs. For the purposes 

of VQ, the image cam be considered to be a mosaic of constituent image blocks of 

size n X n {n < N) pixels. These blocks can in tvim be mapped onto a subset of 

vectors from a n^-D Hilbert space. The imderlying principle in the operation of VQ 

is that the projection in a larger vector space can he approximated as a spatial union 

of projections in a smaller vector space. In other words, encoding a large image can 

be accomplished by: 

• Partitioning the image into a mosaic of smaller image blocks. 
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• Encoding each of the smaller blocks individually and retiling them back to 

reconstruct the larger image. 

If 6 is a image (dimension: N x N) composed of ordered smaller image blocks 

(dimension n x n) = 1,2,3, ...oo , then the image can mathematically be 

represented as: 

N / n  N / n  

~ "^'2/ -  nj )  (5.1) 
1=0 j=0 

Each individual block is characterized as either a shade or an edge block depending 

on the activity level of each block. A set of criteria to quantify the activity level of 

an image block used in this study is described in detedl in Chapter 4 [20]. 

5.4.2 Sets and Projections Associated with the Image Data 

Let b <—y B = ̂ {b}) denote a 2-D Fourier transform pair. Let Vi 

represent the shade partition and V2, the edge partition of an integer vector space. 

The sets are then defined as follows. 

(i) Ci = {9m 1 Pm ^ Vi,7n = 0,1, ...Ml} corresponds to the shade codebook of the 

VQ. It denotes a subset of codevectors in a vector quantizer (VQer) that is a 

representative of the shade partition Vi. The association of a vector into the 

shade partition is described by Ramamurti £ind Gersho [20|. A copy of this 

codebook resides both at the encoder and the decoder. 

(ii) (2 = {HM\  LIM =  0 ,1 ,2 ,  ...M2} corresponds to a low resolution edge 

codebook of the VQ. It denotes a subset of codevectors in a vector quantizer 

(VQ) that is a very weak representative of the edge partition Vi. The association 
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of a vector into the edge partition is described by Ramamurti and Gersho [20]. 

A copy of this codebook resides both at the encoder and the decoder. 

(iii) ^ = {Zm I G V2,m = 0, 1,2,...M3} corresponds to a high resolution edgQ 

codebook of the VQ. It denotes another subset of codevectors in a vector quan­

tizer that is a strong representative of the edge partition V^. The difference 

between ^2 and ^ is in the number and distribution of vectors in each subset 

(Ms >> Mi). This codebook resides only at the decoder. 

(iv) C4 = I B[u ,v]  =  0,V[it,v] ^ Xc} denotes the subset of images whose Fourier 

transform components equal 0 outside a certain region Xc in the u — v plane. 

(v) Cs = I O' ^ < 0,'^en 6 b} denotes a subset of all images whose individual 

pixels lie between a prescribed closed interval [Q,/?]. 

(vi) CNL = {& I V/ € Fi, / = Km, Km € Ci. T" = 0,1,2, ...Mi} denotes a subset of 

all images that have identical shade vectors but different edge vectors. 

The projections on these subsets are defined as given below: 

i. Projection onto IS f is any arbitrary vector in the n^-D Hilbert space then 

the VQ operation is defined as: 

nim,„ 11/ - gmWi  if f  eV i  
(0.2) 

0, if 
/ = Pi/ = 

where / is the vector that has the smallest L2 norm with / in the subset 
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f = P2f = 

Projection onto If / is any arbitrary vector in the n^-D Hilbert space then 

the VQ operation is defined as: 

minm 11/ - /lmll2 if / € V2 
(0.3) 

0. if / ^ Vi 

where / is the vector that has the smallest La norm with / in the subset ^2-

Projection onto E / is any arbitrary vector in the n^-D Hilbert space then 

the VQ operation is defined as: 

minrn 11/ - ImWi if / ^ ^2 

0, if / ^ V2 

where / is the vector that has the smallest L2 norm with / in the subset (3. 

f = P2f = (5.4) 

Psb = (5.5) 

Projection onto Q: The projection is defined by a lowpass mask in the Fourier 

domain. If 6 is any vector obtained as a spatial union of vectors from the n^-D 

Hilbert space then the operation in this subset is defined as: 

B[u ,v] ,  if (u.u) 6 Xc 

0 ,  i f  {u ,v )  ^  Xc  

where b <—»• B is the 2-D Fourier transform pair and b itself is a spatial union 

of vectors (i.e., f's) from the n^-D space as represented by (1). 

Projection onto Qs : If 6 is any arbitrary vector (image) in the A'^-D Hilbert 

space and Ci, 62,63... are its elements then the projection operation / is defined 

as: 

(5.6) 

a if 

f  =  Psb=< en if 

if 
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vi. Projection onto Cjvl : If 6 is any arbitrary image, with its vectors classified to 

belong to either Vj or V2, then the projection operation PNL is defined as 

JV/n N / n  

PNLb = £ £ {x-ni,y- nj) + {x-ni,y- nj)\ (5.7) 
i=0 j=0 

where is the shade vector that is identical at that position to all the images 

in the subset and all edge vectors are VQ'ed using the subset (3. 

During the encoding operation of VQ, subsets and C2 are merged to form 

a single codebook. The operation of VQ inherently introduces additional high fre­

quency components into the decoded image in the form of discontinuities at every 

block boundary. and ^4 are defined to eliminate these discontinuities. However, aJl 

these subsets are not strictly convex, particularly U C2 and ^ due to the inherent 

non convexity of quantization operation. This can also be shown by the fact that the 

sets defined above do not satisfy the fundamental definition of convex sets: 

Definition 10 A subset Q of a Hilbert space is said to be convex if together with any 

f \  and  f i  i t  a l so  con ta ins  y , f i - \ -  {1  — y ) f2  for  a l l  i j .  ,  0  <  fj ,  <  I  .  

This is the reason for imperfect restoration by the method of CP as applied 

to VQ. However, this does not negate the effectiveness of such methods but only 

serves to define their limits. Algorithms based on the theory of CP can and do work 

to restore images, at least partially, and hence improve the reconstruction (firom a 

subjective point of view). 
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Mathematically, the operation of VQ after classification into shade and edge 

vectors can be expressed as: 

b ={Ps + Pe) b  =  -n i . . y -  n j )  +  -n i . . y -  n j ) ]  

where P, b = Efio {x-ni,y- nj) 

and Peb = Ei2?PiP^H^ - ni,V - nj) 
(5.8) 

where b is the decoded image composed of ordered image blocks which are projections 

of the vectors in either Ci or C2 at the corresponding positions in the original image. 

Psb is the VQ'ed image with all shade blocks reconstructed and edge blocks masked, 

while PJ) is the VQ'ed image with all edge blocks reconstructed and shade blocks 

masked. 

5.4.3 The Algorithm 

Image restoration at the decoder is performed with an iterative algorithm which 

amounts to a repeated application of the projections defined in the previous section. 

Step 1; The VQ'ed image is reconstructed at the decoder with shade and edge code-

books identical to those at the encoder, which is represented as b = bo 

Step 2: The reconstructed image is then partially smoothed (using a low pass filter) 

to reduce the 'blocking effect' inherent in the operation of VQ. This projection 

operation is symbolically equivalent to P4 6, a projection of the VQ'ed image 

onto its low firequency subband. 

Step 3: The resulting image is then tested and corrected for any pixel intensity limit 

violations, i.e., P5P4 b. 
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Step 4: The smoothed image is remapped back onto the codebook, but with a mod­

ification in the mapping operation. All shade blocks are replaced with their 

corresponding unsmoothed versions from ^i, while the edge blocks are VQ'ed 

using the subset Thus, the sequence of projection operations depends upon 

the space ( Vi or V2), to which the vector in question belongs to. 

A mathematically compact notation for one iteration of the algorithm can then 

be given by 

bk+i — PNLP^PA h 
(5.9) 

bo ={Ps + Pe)b 

We also define an indicator fimction in the spatial domain as follows: 

1. if a'"'= A/<») 
(5.10) 

0, otherwise 
r =  

where is the ath vector in the original image and is the corresponding 

decoded vector. The mathematical expression for image restoration is then given as 

below: 

/t+i = r ^ + (1 - r) min ||S^^ [Bfc [w, u] (xc)] - lm\\^ (5.11) 

where fo is the vector from the VQ'ed image, fk is the vector from the iteration, 

Bk [u, v] Xc is the lowpassed Fourier transform of the entire image after k iterations. 

The following assumptions are inherent in the interpretation of (5.11). All higher 

frequency components are localized exclusively to the edge blocks. Shade blocks 

contain negligible amounts of high frequency components, and so, are unaffected by 

the restoration algorithm. 
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5.5 Implementational Aspects 

At the Encoder: 

The input image is partitoned into subblocks of 4 x 4 pixels. Each subblock is 

classified as either a shade or an edge block. The mean of each block is predicted 

causally, both at the encoder and the decoder as a function of the nine adjacent pixels 

as shown in the Figure 5.2 [22]. If the difference between predicted mean and the 

actual mean (at the encoder) of a block is greater than a threshold, the actual mean 

is transmitted as charmel information. If not, the predicted meain is used during 

decoding. 

\ \ \ \ \ 
\ 
\ 
\ 
\ 

Figure 5.2: Calculation of the average value of an image block 

The mean removed blocks are then quantized using a VQ. The codebook for 

the VQ is composed of two subcodebooks, a shade codebook (20-25 codevectors) 

and a vestigial edge codebook (8-10 codevectors). This operation is a non-linear 

approximation of projection of a vector space onto its subset. The indices of the 

codebook vector nearest to a vector in question is entropy (Huf&nan/Arithmetic) 

coded and transmitted through the chauinel. 

At the Decoder: 

Indices are received from the channel, and the image is reconstructed using 
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the corresponding codebook vectors. The resulting decoded image has good shade 

reproduction but annoyingly degraded edges. The CP algorithm is used to restore 

the degraded edges without altering the shade regions. This restoration is not exact 

but experiments on real grayscale images produced subjectively pleasing edges with 

near complete elimination of the staircase effect. 

The result of the projection in Step 2 of the algorithm can be interpreted as 

follows: The smoothing operation is equivcilent to letting the edge subset and the 

shade subset mutually project onto each other. This operation has very little effect 

on the shade blocks that are far removed from the edges. However, it drastically 

affects all the edge blocks sind shade blocks in their vicinity. Step 4 effectively nullifies 

all projections of edge subset onto the shade subset while letting the shade subset 

project on to the edge subset. Steps 1-4 are performed iteratively to obtain a final 

image with smallest I2 norm between the original and the decoded image. 

The geometrical representations of the subspaces along with their representative 

codebook vectors are sho\\'n in Figures 5.3 and Figure 5.4. 

Figure 5.3: Shade space with codevectors and corresponding partitions 
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Figure 5.3 represents the shade subspace and its representative vectors. The ar­

rows represent the displacements various shade vectors undergo during the smoothing 

operation. It is assumed that the magnitude of these displacements are do not cross 

the transition hjrperplanes of the respective domains. 

Figiire 5.4: Edge space with a low resolution and a high resolution codebook and 

Figure 5.4 represents the edge subspace aind the corresponding representative 

vectors. The codebooks of both the encoder and the decoder are superimposed on 

each other. The solid lines represent the transition hyperplanes of the encoder and the 

dotted lines those of the decoder. The Jirrows represent the displacements of various 

edge vectors imdergo during the smoothing operation. Since the edge codebook is 

very much larger at the decoder than at the encoder, the displacements are large 

enough to reproject the edge vectors to different domains based on the direction of 

displacement of each vector. Thus, by projecting the edge vectors onto a more 

• Representative vectors in the edge subset at the encoder 
o Representative vectors in the edge subset at the decoder 

corresponding partitions 
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Ccxlebooks identical 
to those at the encoder 

Himinates discontinui­
ties at the block edges 

Prevents shade 
vector deterioration 

Refines edges to 
a better resolution 

Intensities between 
[0^5] for 

grayscale images. 

No 
p^deteraiined 
experimentally 

'Yes 

No. of 
Iterations 

Retile 
Image 

Reconstructed Image 

Lowpass Filter Image 

Check pixel intensities 

Segment image iiuo blocks 

Reproject all edge 
vectors 

Decode the VQ 
Compressed Image 

Reuse shade vectors 
from first decoding 

Figure 5.5: A schematic representation of the projection algorithm 

elaborate subset compared to that at the encoder, we seek to restore the edges at 

least partially. 

The aforementioned theory of using two different (low and high resolution) code-

books at the decoder can be extended to multiple high resolution codebooks as fol­

lows: 

Proposition 11 Decoding can he performed at several resolutions using progressively 

larger and more detailed edge codebooks at every iteration. The limiting resolution 

would be that of the encoded original image. 
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5.5.1 Decoding with Spatied Controlled Smoothing (Particular Case) 

This case is applicable only when the encoding/decoding block sizes are small, 

typically 4 x 4. In the theory presented in the general case, if the subset (3 —» oo, 

we have a particular implementation of the restoration Jilgorithm where each of the 

perturbed edge vector maps onto itself in every iteration. Then, the convergence 

of the entire image depends solely on the converging ability of the individual edge 

vectors. The modified version of the theory for this case is presented below. 

5.5.2 Sets and Projections Associated with the Image Data 

Let b  •<—B {i . e . ,  B  =  ̂  {b} )  denote a 2-D Fourier transform pair. Let Vi  

represent the shade partition £ind V2, the edge partition of an integer vector space. 

The sets are then defined as follows. 

(i) = {QTH I ^7n € Vi, m = 0,1, ...Mi} denotes the subset of codevectors in 

a vector quantizer (VQ) that are obtained from the shade partition Vi. The 

association of a vector into the shade partition is described by Ramamurti and 

Gersho [20]. 

(ii) C2 = {hm 1 € V2,7n = 0,1,...M2} denotes the subset of codevectors hm in 

a vector quantizer (VQ) that are obtained from the edge partition V^. The 

association of a vector into the partition is described by Ramamurti and Gersho 

[20]. 

(iii) ^ = {6 I jB[u, u] = 0,V[u,i;] ^ Xc} denotes the subset of images whose Fourier 

transform components equal 0 outside a certain region Xc in the u — v plane. 
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(iv) Q = {b\a<en'^l3, Ve„ € 6} denotes a subset of all images whose individual 

pixels lie between a prescribed closed interval 

(v) ^NL = {ft I V/ e Vi, / = Km, Km G Ci, "I = 0,1,2, ...Mi} denotes a subset of 

all images that have identical shade vectors but different edge vectors. 

The projections on these subsets are defined as given below: 

i. Projection onto If / is any arbitrairy vector in the n?-'D Hilbert space then 

the VQ operation is defined as: 

where / is the vector that has the smallest L2 norm with / in the subset ^1. 

ii. Projection onto (^2- If / is any arbitrary vector in the n^-D Hilbert space then 

the VQ operation is defined as: 

where Jim is the vector that has the smallest L2 norm with / in the subset ^2-

iii. Projection onto (^: The projection is defined by a lowpass mask in the Fourier 

domain. If 6 is any vector obtained as a spatial union of vectors from the n^-D 

Hilbert space then the operation in this subset is defined as: 

f  =  P ^ f = <  
min,„ 11/ - gm^2 ^ 

0, if fiv. 
(5.12) 

minrn 11/ - IhnlU f ^Vl 

0, if / ^ ^2 
(5.13) 

B[u ,v \ ,  if {u ,v )  €  Xc 
P3 6 = < 

0, if {u ,v )  ^  Xc  
(5.14) 

where b <—»• B is the 2-D Fourier transform pair and b itself is a spatisil imion 

of vectors (i.e., f's) from the n^-D space as represented by (1). 
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iv. Projection onto Ci : If 6 is any arbitrary vector (image) in the iV^-D Hilbert 

space and Ci, 62,63... are its elements then the projection operation / is defined 

as: 
a if en < O! 

J  =  P^H=\  en if Q < en < /3, (5-15) 

^ if e„ > ^ 

V. Projection onto C/vl : If 6 is any arbitrary image, with its vectors classified to 

belong to either Vi or V2, then the projection operation PNL is defined as 

N / n  N / n  

PNJ> = £ £ [^m ix-ni,y~nj)\ (5.16) 
1=0 j=0 

where is the codevector that is identical in all the images at that particiilar 

position in the subset 

During the operation of VQ, subsets and C2 are merged to form a single 

codebook for encoding. The operation of VQ inherently introduces additional high 

frequency components into the decoded image in the form of discontinuities at every 

block boundary. ^ is defined to eliminate these discontinuities. 

Mathematically, the operation of VQ after classification into shade and edge 

vectors can be expressed £is: 

b = (Ps + Pe) b = -ni,y-nj) + -ni,y- nj)] 

where Psb = YAJO Yljlo Pif^°-Hx - ni,y - nj) 

and Pe b = ZfIS P2l^''Kx -m,y- nj) 

(5.17) 

where b is the decoded image composed of ordered image blocks which are projections 

of the vectors in either Ci or C2 at the corresponding positions in the original image. 
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Psb is the VQ'ed image with all shade blocks reconstructed and edge blocks masked, 

while Peb is the VQ'ed image with all edge blocks reconstructed and shade blocks 

masked. 

5.5.3 The Algorithm 

Image restoration at the decoder is performed with an iterative algorithm which 

amoimts to a repeated application of the projections defined in the previous section. 

Step 1: The VQ'ed image is reconstructed at the decoder with shade and edge code-

books  iden t i ca l  t o  those  a t  the  encoder ,  wh ich  i s  r ep resen ted  asb  =  bo 

Step 2: The reconstructed image is then partially smoothed (using a low pass filter) to 

reduce the "blocking effect" inherent in the operation of VQ. This projection 

operation is symbolically equivalent to P3 6, a projection of the VQ'ed image 

onto its low frequency subband. 

Step 3: The resulting image is then tested and corrected for amy pixel intensity limit 

violations, i.e., P4P3 b. 

Step 4: The smoothed image is reprojected back onto the set Ci C2) but with a mod­

ification in the projection operation. All shade blocks are replaced with their 

corresponding unsmoothed versions, while the edge blocks are left tinreplaced, 

PNLPAPS^. Thus, the sequence of projection operations depends upon the space 

( Vi or V2), to which the vector in question belongs to. 
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A mathematically compact notation for one iteration of the algorithm can then 

be given by 

6fc+i = PnlPAPZ h . 
(0.18) 

bo ={Ps + Pe)b 

The numerical implementation of the nonlinear projection operation is realized 

by defining an indicator function in the spatial domain as follows: 

1 if 
T = i  (5.19) 

0 otherwise 

where is the nth vector in the original image and fo^ ^ is the corresponding 

decoded vector. The mathematical expression for image restoration is then given as 

below: 

/ITi = r /o + (1 - r) r' [b, t;] (xc)] (5.20) 

where /o is the vector from the VQ'ed image, fk is the vector from the iteration, 

3^"^ is the inverse Fourier transform operator and Bk [w, v] Xc is the lowpassed Fourier 

transform of the entire image after k iterations. The following assumptions are in­

herent in the interpretation of (5.20). All higher frequency components are localized 

exclusively to the edge blocks. Shade blocks contain negligible amounts of high fre­

quency components, and so, are unaffected by the restoration algorithm. Figure 5.5 

is a schematic representation of the algorithm. 

5.5.4 Determination of "Pmax " in the Recovery Algorithm 

The sole objective of the image recovery approach is to provide subjectively 

pleasing images. Objective measures (ex. MMSE) carmot be used for Paax determi­

nation in this case, because the decoder does not have an apriori knowledge of the 
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original image. Hence, a purely subjective criterion is used in order to determine 

the number of iterations the decoded image is passed through. This is in accordance 

with the common practice used in the field of image compression. A quantity known 

as the mean opinion score (MOS, described in detail in Chapter 7), is obtained for 

several test images after every iteration. The iteration number at which the MOS 

achieves the best value is designated as the Pmax-

Two sets of experiments were performed to determine the effectiveness of the 

recovery process. 

1. The first approach to image recovery was with a single low resolution codebook 

but no high resolution codebook. The image recovery is achieved with just a 

lowpass filtering of the decoded image followed by shade vector replacement. 

The Pmax for this approach was 12 iterations. 

2. The second approach was with two edge codebooks, a low resolution and a high 

resolution edge codebook. The image recovery in this case, is achieved both by 

the lowpass filtering operation and the requantization of the edge vectors to a 

better codebook. The Pmaoc with this approach was 2 iterations. 

5.5.5 The Lowpass Filter 

A non-causal lowpass filter is used in the recovery operation. The definition of 

the filter is such that its impulse response is the prediction/estimation coefficients 

used in predicting edge block pixels based on its surroundings. Let each pixel in the 

edge block, be estimated as a linear combination of 48 surrounding pixels: 

3 3 

^  a(m,n)  . x ( i  — m ,  j  — n )  my^O,ny^O (5.21) 
m=-3n=-3 
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It should be noted that each pixel in an edge block is estimated from a different 

set of pixels depending on the position of that pixel within the edge block. By the 

LMMSE approach, the estimation coefficients can be calculated as a set of Weiner-

Hopf equations as shown below 

a = R-^a (5.22) 

where A, R and C are represented as follows: 

a = a(-3,-3) a(-3,-2) . . . a(3,3) (5.23) 

i? = 

Corr(x_3 _3 , X-3,-3) Corr(x_3 _3, x_3-2) 

Corr(x_3 _2, x_3,-3) Corr(x_3,-2, 

Corr(x_ 3 _ i ,  x _ 3 _ 3 )  C o r r ( x _ 3 _ I  ,x_3_2) 

CO7T(X_3,O , A:_3-3) Corr{x^z, 0 , X-z,-2) 

Corr{xz,\, A:_3-3) Corr{xz,\, a;_3-2) . 

Corr (x3 ,2 ,  x - z , - z )  Carr{xz ,2  ,  a ;_3-2)  •  

Corr (x3 ,3  ,  x_3 , -3 )  Corr{xz , z  , x . z -2 )  •  

. . C7orr(x_3 _3 , X3,3) 

Corr(x_3 _2, 2:3,3) 

Corr(x_3 _I, X3,3) 

Corr{x_z,o, 2:3,3) 

. . Corr{xz,\, xz,z) 

. . Corr{x+z,2, 2:3,3) 

Corr{xz,z, 2:3,3) 

(5.24) 

0.= Corr{xofl, X-z-s) Corr{xofi, X-z_z) • • • Corr{xofi, Xz^) (5-25) 

where Corr is the crosscorrelation between the two samples Xo and Xj,, i.e., Corr{xa, Xf,) = 

E [xo. Xb], E being the expectation operator. Figure shows the frequency support of 
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a generic 2-D lowpass filter whose impulse response would be a sine function on a 

spatial 2-D grid. 

Figure 5.6: A 2-D lowpass filter 
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CHAPTER 6. CONVERGENCE ANALYSIS OF THE ALGORITHM 

This chapter investigates the convergence of the average mean square error 

(MSB) distortion, as a result of the recovery algorithm. The average MSB distortion, 

Di, between the original and reconstructed images, due to VQ'ing with a codebook 

of size I, is given by the following expression: 

(6-1) 
i=i 

where Xi and are the intensity values of the pixels at identical coordinates in the 

original and the decoded images and N is the total number of pixels in the encoded 

image. However, the practical criterion for measuring the fidelity of the reconstruction 

is a subjective measure. There is a well established empirical measure in the field of 

image compression. This measure is known in the literature as the Mean Opinion 

Score (MOS) [27]. It is described in detail in Chapter 7. In this chapter, we present 

a case for using the MOS as a measure of image fidelity and present the empirical 

relationship between the MSB (objective fidelity measure) and the MOS (subjective 

fidelity mesisure). The reasons for using MOS as a measure of fidelity is the following: 

• The primary objective of image recovery is to obtain better subjective rendi­

tions. Hence, it is more appropriate to use a quantity that relates directly to 

human perception than MSB. The MOS has been used to measure speech and 

image fidelity by several authors [27]. 
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• There is a monotonic inverse relationship between MOS and the average MSE 

[27]. Hence, investigating MOS is an indirect way of investigating average MSE, 

subject to human visual system constraints. 

By the definition, a reconstruction that is indistinguishable from the original 

would be a MOS value of 5, while the worst performance would have a MOS value of 0. 

An ideal recovery process woiild result in an asymptotic convergence of MSE (i.e, D/) 

to the smallest possible value and the MOS to a value as close to 5 as possible. In the 

remainder of this chapter, we investigate the convergence property of the algorithm 

based on the mean square error (MSE). However, it hsis been established that MSE 

is a very bad criterion to measure subjective fidelity. Even as this dissertation is 

being written, researchers are investigating several new expressions for measuring 

perceptual distortion based on a model of human visual processing [25]. 

The convergence of the algorithm depends on the convergence characteristics of 

two operations, viz., the VQ and the lowpass filtering. The convergence properties 

of VQ can be determined by considering the operation to be a reasonable wanderer. 

The definition of a reasonable wanderer is given below [23]. 

Definition 12 A mapping T : V ^ V is said to be a reasonable wanderer if for 

every xE V 

< oo 
n=0 

Definition 13 A sequence of vectors Xn EV is said to be weakly convergent to f EV, 

iff 

{ { x n  —  f )  , y ) — > •  0  a s  n — y o o ,  f o r  e v e r y  f i x e d  y  E  V  
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and strongly convergent to } £V, iff 

||a:n — /II —• 0 as  n - ^  oo  

Generally, strong convergence always implies weak convergence. However, in a 

finite-dimensional space the converse implication is also valid [28]. 

Theorem 14 Let T : V V be an asymptotically regular non-expansive mapping 

with closed convex domain V C H (a Hilbert space), whose set of fixed points T C.V 

is nonempty. Then for any xE V, the sequence T^x is weakly convergent to an 

e lemen t  o fT .  

A full proof for this theorem can be found in [23]. The operation of VQ satisfies 

both the definition and the theorem completely. It is a non-expansive mapping within 

the limits of the largest codebook. The 16-D integer vector space, V, is a closed convex 

set and the finite set of fixed points T is the set of representative vectors in the 

codebook. Thus, the operation of VQ is indeed weakly convergent. The three main 

operations in the recovery algorithm are: (1) Lowpass filtering P5, (2) Replacement 

of the shade blocks and (3) Requantization of the edge blocks. 

= {Ps +  Pe)Psbk (6.2) 

bk+1 = PsPsbh + 

In the above equation, (PsPs) operate only on the shade blocks while {PePb) only 

operate on the edge blocks. Both Pg and are weakly convergent as far as the 

operations are performed in the B}^ space. So, the convergence of the composite 

operations and PePg is dependent on the properties of the filter P5. In the 
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remainder of this chapter we look at the conditions required for both convergence 

and divergence of the algorithm. 

Let X be an edge vector from the original image (mean removed) which is to be 

VQ'ed by the edge codebook. Obviously, x is a vector in the 16 -D integer vector 

space with individusil elements being XQ, X^, ... X15. The vector is estimated based 

on the intensity values of surrounding pixels. Effectively, each element in the edge 

vector is estimated with a different set of coefficients eind pixels. Mathematically, 

where x is the estimate of the original edge vector, X is a matrix consisting of the 

surroimding pixels for each element in the edgevector x and a is a vector of the 

prediction coefficients. 

At the decoder, any edge vector x can be estimated as shown in (6.4), where x' 

is the decoded version of the edge vector x in the encoded image, X is a matrix of 

surrounding pixels and e an error vector. 

The coefficient matrix a is obtained using a set of original images for pixel data. At 

the decoder, however, the same set of coefficients are used with quantized pixel data. 

Thus, there is some amount of mismatch between the data used in the calculation 

of the predictor coefficients and the data used for predictions. The assumption here 

is that the surroimding shade vectors are reproduced with sufficient fidelity at the 

decoder that the coefficient vector a is valid with the distorted shade pixels. The 

prediction of a single edge vector, on a pixel-by-pixel basis, in terms of the surrounding 

X = Xa (6.3) 

= Xa + e (6.4) 
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pixels is represented mathematically as follows, 

Xi = a;!.3 _3a_3-3 + Xj _2a-3,-2 + + ^3,2^^,2 ^3,3^3,3 (6.5) 

i = 0,1,2, ,15 

where Xj is the pixel in the edge vector that is being predicted and (m = 

—3, —2,..., 2,3; n = —3, —2,..., 2,3) is the pixel that is m rows aind n colunrms removed 

from the predicted pixel. In matrix representation, the prediction equation would be 

as follows. 

1 
0

 X_3,_3 ^-3,-2 

H
) 

X_3,_3 ^-3,-2 

X2 r2 
^-3,-3 2^-3,-3 

X3 = ^-3,-3 
^3 
X-3,_3 

2I5 
-15 
•*'-3,-3 •^-3,-3 

X. 

x: 

''3,3 

•^3,3 
2 
3,3 

,3 
3,3 

X. 15 
3,3 

0—3,-3 

0—3,-2 

0—3,-1 

0-3,0 

P
 

1 

(6.6) 

Let us define two sets of edge codebooks, a low resolution edge codebook with 10 

codevectors and a high resolution edge codebook with 256 edge codevectors. The av­

erage MSE distortion, between the original and reconstructed images, due to VQ'ing 

with a codebook of size Z, is given by (6.1). So, the average distortions between the 

origineil and reconstructed images due to VQ'ing with codebooks of size 10 and 256 

will be Dio and D256 respectively. It has been shown by Gray and Nasrabadi [19, 21] 

that the average distortion is inversely proportional to the size of the codebook. For 

example, in the experiments conducted during this study the average distortion D 
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over all the edge vectors when VQ'ed with an edge codebook of size 10 was found to 

be 3115.16 and when VQ'ed with an edge codebook of size 256 it was 1356.67. Thus, 

it is logical to assume that Dw > D^^e-

The effectiveness of the edge recovery algorithm depends on two factors: 

1. The distribution of the representative vectors throughout the vector space (i.e. 

the distance between any representative vector aind its partition boundary). 

2. The amenability of the edge blocks/vectors to estimation based on surrounding 

blocks. 

In the ideal case of imiformly distributed codebook vectors and a constant dis­

tance between any representative vector £ind its partition boundaries, the following 

assertion can be made. For an asymptotic bounded convergence, it is essential that 

the norm of the prediction error (||e||) in (6.4), on an average, be smaller than the 

quantization noise at every iteration. This assertion is explained with reference to 

Figure 6.1, which shows an enlarged view of a small portion of the edge vector space 

with the larger (high resolution) codebook superimposed. Xa, represented by the 

long dashed arrow, denotes the predicted version of a particular edgeblock (vector), 

and e (represented by the short dashed arrow), the error between the actual vector 

and its predicted version. The input edge vector to be encoded is represented by the 

solid arrow and denoted by Xa+e. Due to the VQ operation with a vestigial edge 

codebook, the error due to encoding will be e^g. Invariably, Ijet,,! >> ||e|| because of 

the extremely small size (and hence a very low resolution) of the edge codebook. 

The optimum representation for this input edge vector would be the codevector 

m. The codevectors 6,c,rf,/,£^^,i,2etc. are the immediate neighbors of m. Since, at 
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• £ 

X a  

Boundary of a codevector in the larger codebook 

• A representative vector in the larger edge codebook 

Figiire 6.1: A diagrammatic representation of the prediction operation for optimal 
recovery operation 

each iteration the shade regions remain unchanged the prediction vector X a ,  which is 

based on shade pixels remains constant. The recovery algorithm serves to iteratively 

reduce the norm of the error vector, , and hence the error itseE It can be 

seen that by applying the algorithm infinitely we will force Cvq to zero and hence the 

edge vector approaches Xa asymptotically. Forcing |e„g —> 0 is coimterproductive, 

because in doing so, we force the edge vector to the cell represented by / rather than 

m . Thus, the aim of the recovery should be to make approach e, rather than to 

force to zero. 

If the norm of e is smaller than the quantization error in the partition, the 

asymptotic worst case error between the original and the recovered images can be 
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upper bounded by the distance between any two adjacent codebook vectors (eg., 

distance between m and j). This is because every single edge vector in the image 

is guaranteed to be asymptoticailly mapped to the best possible codevector or the 

one in the immediate neighborhood. Correspondingly, the graph of the MSE can be 

upper boimded and is depicted as shown in Figure 6.2. The corresponding values of 

Mean Opinion Score (MOS) is shown in Figure 6.3. 

4000.0--

3000.0--

2000.0--

1000.0--

Iteradons 

Figure 6.2: Mean square error v/s number of iterations iinder near optimal condi­
tions 

However, it is impossible to obtain a set of prediction coefficients that are opti­

mum to all edge vectors, as described above. This means the norm of e carmot be 

guaranteed to be less than the quantization error for all predicted edge blocks. Under 

such suboptimal conditions, the graph of MSE over the niunber of iterations can be 

depicted as shown in Figure 6.4 and the graph of Mean Opinion Score (MOS) over 

the nvimber of iterations as in Figure 6.5. 
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"MOS 

4.0 

3.0 

2.0 --

1.0 

2 3 4 Iterations 

Figure 6.3: The MOS v/s number of iterations under near optimum conditions 

Let £fc be the average error at iteration over all the edge blocks/vectors in 

an image. Let DL be the average error when the image in question is VQ'ed with a 

codebook of size L. Then for an optimum performance, 

Compressing the image using a vector quantizer with a small codebook results 

in a huge quantization error. If e,o is the quantization error of the z*'' edge vector 

at 0^ iteration (due to the VQ operation with the smaller edge codebook), <B , the 

average error due to prediction alone, and (EQ is the average error due to prediction 

and VQ with the smaller codebook (i.e, at 0''' iteration). 

Cik = DL 

, riili&iii = 77 

k is the iteration parameter (6.7) 

where (Bk = 1,2,..., JV all edge vectors in the image 

Co » <B (6.8) 
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4000.0 •-

3000.0--

2000.0-• 

1000.0--

Iterations 

Figure 6.4: Mezin-squaie error v/s niimber of iterations under suboptimal conditions 

where Co = The edge vectors are recovered using the CP based algorithm. 

Figure 6.5 depicts the edge vector space with both the smaller and the larger 

edge codebooks superimposed within the space. 

Figure 6.7 is an enlarged view of a very small portion of the edge vector space 

(encircled portion of Figure 6.6). It is a schematic depiction of the edge vector 

recovery process. The original vector consists of a set of pixek calculated as an 

estimation based on neighboring pixels (predominantly shade), given by X,nQ and a 

corresponding error valuer (i.e, Xir^a + ei). It is represented by the only solid arrow 

in the figure. When the vector is VQ'ed with a small codebook and hence a large 

average distortion, the norm of error vector increases to ||ejol|. 

At the decoder, edge recovery is to be accomplished by using the following apriori 

information, 
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.'MOS 

4.0 -L 

3.0 --

2.0 --

1.0 

2 3 4 Iterations 

Figure 6.5: TheMOS v/s number of iterations under suboptimaJ conditions 

1. The predicted version of the edge vector in question, based on the surrounding 

shade pixels. 

2. The codevector from the smaller (hence low resolution) edge codebook to which 

the edge vector was mapped to at the encoder. 

It is assumed that the predictors are optimum in the MSE sense and the indi­

vidual prediction errors are essentially zero mean random vailues. The norm of these 

errors is bounded by the distance between the boundary and the representative vector 

in the smeiUer edge codebook to which the vectors are mapped to. It is required to 

requantize these individual edge blocks onto a larger (i.e, a higher resolution) code-

book and hence achieve better subjective fidelity. A simple requantization with the 

Ijirger codebook cannot achieve higher resolution because: 
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— Partition in the smaller edge codebook 
Partitons in the larger edge codebook 

• Representative vectors in the smaller edge codebook 
® Representative vectors in the larger edge codebook 

Figure 6.6; Edge vector space with both the low and the high resolution codebooks 
superimposed 

• Every edge block mapped to a vector in the smaller edge codebook will be 

remapped, eimiasse, onto a vector in the lairger edge codebook. This essentially 

is equivalent to a simple translation of a set of vectors that were all mapped to 

one representative vector in the smailler edge codebook. 

In order to have an increase in resolution, each of the edge block/vector which 

is mapped onto a single representative vector in the smaller edge codebook, has to 

be perturbed in the "right" direction. Since, in images there is a huge amount of 

redundancy between adjacent pixels, this perturbation in the "right" direction can 
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P •— Boundary of a codevector in the smaller codebook 
Boundary of a codevector in the larger codebook 

• A vector in the smaller edge codebook 
° A vector in the larger edge codebook 

Figure 6.7: A diagrammatic representation of edge block recovery 

be achieved by a lowpass filter wherein the individual pixels in each edge vector is a 

function of the surrounding pixels, predominantly shade. Thus, the lowpass filter in 

the iterative operation serves to pertvirb every edge block in the right direction from 

its mapped value. The filtering operation at each iteration is as follows: 

1. Smooth the image as a whole, partition the filtered image back into individual 

blocks. 
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2. Replace all shade blocks with their corresponding tinfiltered versions, but re-

quantize the filtered edge blocks with the higher resolution edge codebook. 

The aforementioned operations result in a predicted vector (Xjna in Figure 6.6) 

that is relatively a constant at every iteration. If the operation of smoothing followed 

by the shade vector replacement is performed infinitely, the pixels in every edge 

vector will asymptotically approach intensity values equal to their corresponding 

surrounding shade pixels, thereby losing the actual edge information. This is depicted 

in Figure 6.6, where the vector (Xjoo + &o) makes an iterative journey towards the 

vector Xioa. In doing so, the edge vector may shoot beyond the optimal point (from 

a subjective viewpoint), represented by ^^,0^ + ei(opt), and depicted by the line PQ. 

The filtering and prediction operation on £in arbitrary vector, at the 1®' and the n"' 

iteration is given below. 

Let ^0, be the VQ'ed version of the edge vector at 0*'' iteration. Let 

represent the surrounding pixels used in predicting this vector and the error 

vector. The low-pass filtering LP, (defined by the filter whose impulse response is 

represented by the template of the predictor coefficients) of the i"' edge vector at the 

1®' iteration decoding cein be represented as shown below: 

where is the VQ'ed version of the edge vector at iteration, represents 

the surrounding pixels used in predicting this vector and en, the error vector after 

(6.9) 

V Q { L P [ S i o ] )  —  -f-^io "t" [&io] 

V Q { L P [ x ^ ] )  =  

Stl ~ "I" ^fl 



www.manaraa.com

77 

1®* iteration. The lowpass filtering has little effect on the estimator term because all 

the surrounding shade vectors are replaced at each iteration. The small changes in 

the estimator term is due to two reasons: 

• The requauitization of the lowpassed edge block/vector will displace it to the 

nearest vector in the high resolution (larger) codebook. This displacement is 

dependent on the number and distribution of the vectors in the larger codebook. 

• Some of the pixels used in the estimation will be either from within the same 

edge block or occasionailly from other edge blocks. Such pixels will be different 

at every iteration. 

The small differences in the estimator term due to these two factors, is repre­

sented by the term This can be extended, term for term, to the filtering operation 

at any iteration n as follows, 

LP = LP (6.10) 

VQ (LP = Art(n-i)a + + LP 

VQ (LP = Sin 

2Lin ^inOL "1" ^in 

When the size of the edge codebooks are small and hence average quantization 

errors are very large, >> j|ii(n_i)||. In this case, the effect of LP[ei(„_i)] 

dominates over At larger codebook sizes i.e, with smaller average qusintization 

errors, jjLP [£t(n-i)]|| are comparable and so cannot be ignored. 
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Case 1: LP it(n-l) » W k n - l )  

In this csise, where effects of is negligible, convergence can be guaranteed 

by the following two conditions; 

II&.II < l&(n-l)l (6.11) 

(6.12) 

where and is the error vector at the ( n —  1)"' aoid n*'' iteration respectively. 

An is the distance between the codebook vector and its partition to which Xtna + e^n 

is requantized. 

The first condition can be guaranteed by Parseval's theorem since e„ = LP[e^_-^ 

and hence the error vectors should have smaller energy content at each iteration. This 

condition dictates the extent of low pass filtering (magnitude of perturbation) of the 

edge vectors at each iteration. 

Case 2: LP ^(n-i)] fcomparable with ||^i(n-i) 

In this case, the codebooks are fine enough and large enough so that either 

or both of (6.11) and (6.12) do not hold, resulting in a divergence of the algorithm. 

Thus, the average distortion suffered by an image under low resolution encoding 

and subsequent recovery is lower bounded by the average distortion suffered under 

high resolution encoding. In practice, this bound is seldom achievable because it 

implies that every single edge vector reaches its optimum codevector at the same 

iteration. Decisions as to the number of iterations are made based on subjective 

improvements in the image. It is not practical to monitor the recovery of individual 

edge blocks separately. 
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CHAPTER 7. EXPERIMENTAL RESULTS 

7.1 Experimental Results and Perfornicince 

The convex projection recovery algorithm was tested on several photographic 

images from the archives of USC. The dimensions of all images were 512 x 512 with 

gray levels ranging from 0 to 255 corresponding to 8-bit amplitude resolution. Table 

7.1 gives the statisticsil properties of all the images used in the experiments. 

Table 7.1. Statistics of a few typical photographic images 

Statistics peppers Lenna sailboat baboon couple 

Min. Intensity 

Max. Intensity 

Sample Mean 

Sample Variance 

Entropy 

16 37 18 16 0 

211 244 221 214 255 

119.26 140.54 123.55 127.31 121.89 

2139.86 1578.06 3171.39 1320.72 1967.47 

7.374 7.042 7.266 7.139 7.058 

The images "peppers", "sailboat" aind "baboon" were used as the training set 

images while "Lenna" and "couple" were the test images. The training images were 

partitioned into block sizes of 4 x 4. Each of the blocks were classified into either a 
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shade or an edge block. AU shade and edge blocks were collected into two separate 

files. Table 7.2 gives the number of shade and edge blocks in each image. The total 

number of 4 x 4 blocks in each image is 16384. 

Table 7.2. Number of shade and edge blocks in the experimental images 

Statistics peppers Lenna sailboat baboon couple 

Shade Blocks 13301 13658 13539 13642 13180 

Edge Blocks 3083 2726 2845 2742 3204 

A shade codebook of size 24 was generated and two edge codebooks of size 8 

and 232 respectively were generated using the well known Linde, Buzo, Gray (LBG) 

algorithm [26]. The encoder codebook was a concatenation of shade codebook £ind 

the smaller edge codebook of size 10. The decoder consisted of a copy of the en­

coder codebook and several edge codebooks at varying resolutions. Edge recovery 

was based on an iterative CP algorithm which used monotonically higher resolution 

codebooks at each iteration. Figure 7.1 and Figure 7.2 show small areas of the orig­

inal images of 'Lerma' and 'peppers' at 8 bpp. Figiire 7.3 and Figure 7.4 show the 

same areas of 'Lenna' image coded at 0.254 bpp before and after the application of 

the restoration jilgorithm respectively. Figure 7.5 and Figure 7.6 show the corre­

sponding areas of "peppers" image at 0.259 bpp before and after the application of 

the restoration algorithm respectively. Figure 7.7 and Figure 7.8 shows a magnified 

view of a small portion of the peppers image before and after the application of the 

recovery algorithm. 
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Figure 7.1: A portion of "lenna" image (8 bpp) 

7.2 Subjective and Objective Distortions 

Fidelity of signal (image) reconstructions are generally measured using two dis­

tortion measures: (1) Objective and (2) Subjective distortions. The objective distor­

tion is an average measure of the error suffered by each individual sample (pixel) due 

to the compression algorithm. The most widely used measure for this purpose is the 

peak signal-to-noise ratio (PSNR) which uses the mean square error (MSE) criterion. 

The expression for the PSNR is as shown below: 

r ,  / - . » r  ^ ,  ( M a x  p i x e l  v a l u e  i n  t h e  i m a g e ) ^  ,  
P S N R  =  1 0 1 o g „  i ^  ( 7 . 1 )  
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Figure 7.2: A portion of "peppers" image (8 bpp) 

where r { i , j )  is the difference between the original and the reconstructed pixel intesity 

values calculated over the entire image. 

It has been well documented in image compression resesirch that distortion mea­

sures like the mean squared error (MSE) are inaccurate in predicting perceptual dis­

tortion [25]. Image processing literature has practical examples where two decoded 

images exhibiting very similar MSEs show marked difference subjectively. However, 

the development of a tangible expression to quantify subjective fidelity is still an 

ongoing research. In this study, the MMSE criterion is used to quantify the objective 

fidelity. The improvement in the peak signal-to-noise ratio (PSNR) gained by the 

recovery algorithm was upper bounded by 1 dB. Table 7.3 gives the PSNR values of 
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Figure 7.3: 'Staircase effect' due to vestigal edge encoding of the edge vectors (lenna 
- 0.254 bpp) 

some of the images used in the experiments. 

For quantifying subjective fidelity, another widely used definition is that of the 

Mean Opinion Score (MOS) [27]. This score is evaluated by averaging the individual 

opinion scores for each of the images under consideration. This definition has been 

adapted into image coding primarily from the CCITT recommendations for speech 

coding evaluations. CCITT recommends the use of a five point scale {excellent, good, 

fair, poor, bad} which is numerically mapped to the decimal {5, 4, 3, 2. 1} scale. 
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Figiire 7.4: Multiple codebook decoding using the projection algorithm (lenna -
0.254 bpp) 

Table 7.3 Objective performjince of the algorithm on experimental images 

Images Comp. Ratio (bits/pixel) PSNR 

Peppers 0.259 34.23 

Lenna 0.254 31.82 

Sailboat 0.248 33.67 

Baboon 0.267 32.03 

Couple 0.253 31.01 
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Figure 7.5: 'Staircase effect' due to vestigial edge vector encoding (peppers - 0.259 
bpp) 

There are severail types of empiricail subjective tests defined both in speech and 

image coding areas. Two of the oft encountered ones are: Absolute Category Rating 

(ACR) and Degradation Category Rating (DCR). In this study we use the former 

method, since we are only interested in comparing two realizations of an image, for 

their cumulative effect on the subject. Table 7.4 gives the ACR-MOS scores for the 

aforementioned images. 
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Figure 7.6: Multiple codebook decoding using the projection algorithm (peppers -
0.259 bpp) 

Table 7.4 Mean Opinion Scores from the ACR test on the experimental images 

Images No. of Subjects Before Recovery After Recovery 

peppers 10 3.23 3.76 

Lenna 10 3.31 3.92 

sailboat 8 3.56 3.86 

baboon 8 3.74 3.83 

couple 8 3.26 3.81 
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Figure 7.7: A small portion of the "peppers" image expanded (before the application 
of the recovery algorithm) 

7-3 Robustness of the Algorithm 

One of the benchmarks for practical implementation of any algorithm is its 

robustness. This is a measure of effectiveness of the algorithm when its parameters are 

mismatched with respect to the input signal. Two such parameters in this algorithm 

are the VQ edge codebook and the lowpass filter. In order to test for the robustness 

the following two case studies were performed. 

7.3.1 Case 1: Robustness to Codebook Variations 

The silgorithm was applied with the high resolution edge codebooks from two 

different sources. One of the edge codebooks was trained on the training set of images. 
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Figure 7.8: A small portion of the "peppers" image expanded (after the application 
of the recovery algorithm) 

The other was obtained from another researcher who was working in the same eirea 

and had his own edge codebook generated using the same classification algorithm. 

The edge recovery in the images with either codebook, on an average, were as good 

subjectively. This is because even though the codebooks are different, each will have 

a vector that is close to the edge block in question (in the MSE sense). The position 

of those codevectors in the two codebooks may be different but the algorithm still 

chooses the appropriate vector. 

7,3.2 Case 2: Robustness to the Lowpass Filter Parameters 

In order to test for this parameter, the algorithm was applied with a simple 

circular lowpass filter. The region of support for the filter was made approximately 
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equal to that of the calculated filter. The algorithm seems to be robust as long as 

the passbaind and stopband of the two filters were approximately similar. Again very 

little perceptible differences between the two cases were observed after reconstruction 

with identical number of iterations. However, any reasonable increase and decrease 

of the region of support had adverse effects on the final reconstructions. 

The possible reasons for this may be the following: 

• An increase in the passband reduces the amount of perturbation in the edge 

blocks. A large increase in the passband will probably result in a perturbation 

so small that the edge blocks fail to cross over to adjacent partitions. Hence an 

iterative recovery is no longer possible. 

• A decrease in the passband increases the amount of perturbation in the edge 

blocks. A large reduction in the passband will result in a large pertxirbation of 

the edge blocks. In that case the lowpassed edge block will overshoot its opti­

mum codevector in the high resolution codebook and hence cannot be recov­

ered. This is explained in detail in Chapter 6 which deals with the convergence 

Jispects of the recovery process. 
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